1,491 research outputs found

    Model predictive control using MISO approach for drug co-administration in anesthesia

    Get PDF
    In this paper, a model predictive control system for the depth of hypnosis is proposed and analyzed. This approach considers simultaneous co-administration of the hypnotic and analgesic drugs and their effect on the Bispectral Index Scale (BIS). The control scheme uses the nonlinear multiple-input–single-output (MISO) model to predict the remifentanil influence over the propofol hypnotic effect. Then, it exploits a generalized model predictive control algorithm and a ratio between the two drugs in order to provide the optimal dosage for the desired BIS level, taking into account the typical constraints of the process. The proposed approach has been extensively tested in simulation, using a set of patients described by realistic nonlinear pharmacokinetic/pharmacodynamic models, which are representative of a wide population. Additionally, an exhaustive robustness evaluation considering inter- and intra-patient variability has been included, which demonstrates the effectiveness of the analyzed control structure

    On the Use of FOPID Controllers for Maintenance Phase of General Anesthesia

    Get PDF
    This paper investigates the performance achievable with a fractional-order PID regulator controlling the Depth of Hypnosis (measured via the Bispectral Index Scale) through the administration of propofol during the maintenance phase of total intravenous anesthesia. In particular, two different methodologies were applied to tune the controller: in the first case, genetic algorithms (GAs) were used to minimize the integrated absolute error, while in the second case, the isodamping approach-a method that targets phase margin invariance with respect to the process dc gain-was employed. In both cases, the performance was extensively analyzed and compared with that of a standard PID controller by simulating multiple patients through a Monte Carlo method. The results demonstrate that a fractional-order PID controller can be effectively used to control the Depth of Hypnosis, but the improvement with respect to a standard PID controller is marginal

    Neuroprotective potential of isothiocyanates in an in vitro model of neuroinflammation

    Get PDF
    Isothiocyanates (ITCs), present as glucosinolate precursors in cruciferous vegetables, have shown anti-inflammatory, antioxidant and anticarcinogenic activities. Here, we compared the effects of three different ITCs on ROS production and on the expression of matrix metalloproteinase (MMP)-2 and -9, which represent important pathogenetic factors of various neurological diseases. Primary cultures of rat astrocytes were activated by LPS and simultaneously treated with different doses of Allyl isothiocyanate (AITC), 2-Phenethyl isothiocyanate (PEITC) and 2-Sulforaphane (SFN). Results showed that SFN and PEITC were able to counteract ROS production induced by H2O2. The zymographic analysis of cell culture supernatants evidenced that PEITC and SFN were the most effective inhibitors of MMP-9, whereas, only SFN significantly inhibited MMP-2 activity. PCR analysis showed that all the ITCs used significantly inhibited both MMP-2 and MMP-9 expression. The investigation on the mitogen-activated protein kinase (MAPK) signaling pathway demonstrated that ITCs modulate MMP transcription by inhibition of extracellular-regulated protein kinase (ERK) activity. Results of this study suggest that ITCs could be promising nutraceutical agents for the prevention and complementary treatment of neurological diseases associated with MMP involvement

    Event-Based control of depth of hypnosis in anesthesia

    Get PDF
    Background and Objective: In this paper, we propose the use of an event-based control strategy for the closed-loop control of the depth of hypnosis in anesthesia by using propofol administration and the bispectral index as a controlled variable. Methods: A new event generator with high noise-filtering properties is employed in addition to a PIDPlus controller. The tuning of the parameters is performed off-line by using genetic algorithms by considering a given data set of patients. Results: The effectiveness and robustness of the method is verified in simulation by implementing a Monte Carlo method to address the intra-patient and inter-patient variability. A comparison with a standard PID control structure shows that the event-based control system achieves a reduction of the total variation of the manipulated variable of 93% in the induction phase and of 95% in the maintenance phase. Conclusions: The use of event based automatic control in anesthesia yields a fast induction phase with bounded overshoot and an acceptable disturbance rejection. A comparison with a standard PID control structure shows that the technique effectively mimics the behavior of the anesthesiologist by providing a significant decrement of the total variation of the manipulated variable

    Reading a GEM with a VLSI pixel ASIC used as a direct charge collecting anode

    Get PDF
    In MicroPattern Gas Detectors (MPGD) when the pixel size is below 100 micron and the number of pixels is large (above 1000) it is virtually impossible to use the conventional PCB read-out approach to bring the signal charge from the individual pixel to the external electronics chain. For this reason a custom CMOS array of 2101 active pixels with 80 micron pitch, directly used as the charge collecting anode of a GEM amplifying structure, has been developed and built. Each charge collecting pad, hexagonally shaped, realized using the top metal layer of a deep submicron VLSI technology is individually connected to a full electronics chain (pre-amplifier, shaping-amplifier, sample and hold, multiplexer) which is built immediately below it by using the remaining five active layers. The GEM and the drift electrode window are assembled directly over the chip so the ASIC itself becomes the pixelized anode of a MicroPattern Gas Detector. With this approach, for the first time, gas detectors have reached the level of integration and resolution typical of solid state pixel detectors. Results from the first tests of this new read-out concept are presented. An Astronomical X-Ray Polarimetry application is also discussed.Comment: 11 pages, 14 figures, presented at the Xth Vienna Conference on Instrumentation (Vienna, February 16-21 2004). For a higher resolution paper contact [email protected]

    A gain-scheduled PID controller for propofol dosing in anesthesia

    Get PDF
    6siA gain-scheduled proportional-integral-derivative controller is proposed for the closed-loop dosing of propofol in anesthesia (with the bispectral index as a controlled variable). In particular, it is shown that a different tuning of the parameters should be used during the infusion and maintenance phases. Further, the role of the noise filter is investigated.nonenonePadula, F.; Ionescu, C.; Latronico, N.; Paltenghi, M.; Visioli, A.; Vivacqua, G.Padula, Fabrizio; Ionescu, C.; Latronico, Nicola; Paltenghi, M.; Visioli, Antonio; Vivacqua, Giuli
    corecore